Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Bonding				
Ionic	+ - + + + + + + + + + + + + + + + + + +	Cation-anion	400-4000	NaCl
Covalent	•••	Nuclei–shared e ⁻ pair	150-1100	Н—Н
Metallic	+++++++++++++++++++++++++++++++++++++++	Cations-delocalized electrons	75–1000	Fe

van der Waals interactions or Force

In physical chemistry, the van der Waals force (or van der Waals' interaction), named after Dutch scientist Johannes Diderik van der Waals, is the <u>sum of the</u> <u>attractive or repulsive forces between molecules (or</u> <u>between parts of the same molecule) other than those</u> <u>due to covalent bonds, or the electrostatic interaction</u> <u>of ions with one another, with neutral molecules, or</u> <u>with charged molecules.</u> The term includes:

- force between two permanent dipoles (Keesom force)
- force between a permanent dipole and a corresponding induced dipole (Debye force)
- force between two instantaneously induced dipoles (London dispersion force).

It is also sometimes used loosely as a synonym for the totality of *intermolecular forces.*

Johannes Diderik van der Waals Leiden, The Netherlands, 1837 -1923

Group 18 Elements

Element	mp, °C	bp, °C
He	-272	- 269
Ne	-249	-246
Ar	- 189	- 186
Kr	-157	-152
Xe	-112	- 107
Rn	-71	-62

Molecular Halogens

Compound	mp, °C	bp, °C
F ₂	- 220	- 188
Cl ₂	-101	-35
Br ₂	_7	59
I ₂	114	184

Non-Polar: MPt or BPt increases with increasing mass or volume

-

London Dispersion Forces

Silicon Tetrahalides

Compound	mp, °C	bp, °C
SiF₄	-90	- 86
SiCl	- 70	58
SiBr	5	154
SiI4	120	288

Chemical Forces and Interactions: Dependence on Distance between Centers

Type of interaction	Strength	Energy-distance function
Covalent bond	Very strong	Complex, but comparatively long-range
Ionic bond	Very strong	1/r, comparatively long-range
Ion-dipole	Strong	$1/r^2$, short-range
Dipole-dipole	Moderately strong	$1/r^3$, short-range
Ion-induced dipole	Weak	$1/r^4$, very short-range
Dipole-induced dipole	Very weak	$1/r^{6}$, extremely short-range
London dispersion energy	Very weak ^a	$1/r^6$, extremely short-range

Table 6.3 Summary of chemical forces and interactions

* Since London forces increase with increasing size and there is no limit to the size of molecules, these forces can become rather large. In general, however, they are very weak.

$$E = \frac{Z^{+}Z^{-}}{4\pi r \varepsilon_{0}}$$

$$E = -\frac{|Z^{\pm}| \mu}{4\pi r^{2} \varepsilon_{0}}$$

$$E = -\frac{|Z^{\pm}| \mu}{4\pi r^{2} \varepsilon_{0}}$$

$$E = \frac{-2 \mu_{1} \mu_{2}}{4\pi r^{3} \varepsilon_{0}}$$

$$E = -\frac{1}{2} \frac{Z^{2} \alpha}{r^{4}}$$

$$E = -\frac{1}{2} \frac{Z^{2} \alpha}{r^{4}}$$

$$E = -\frac{1}{2} \frac{Z^{2} \alpha}{r^{4}}$$

Intermolecular Forces

An Iconic graphic: Plots of boiling points of EH_x vs. Molecular weights

6.28 Instantaneous dipole/Induced dipole

[‡]Helium cannot be solidified under atmospheric pressure, the pressure condition for which all other phase changes in the table are considered.

Vander Waal Forces of London type: Depend on molecular volume

Table 6.1Selected physical data for group 18 elements.

Fig. 7.1 Part of the structure of ordinary ice; it consists of a three-dimensional network of hydrogen-bonded H₂O molecules.

Intermolecular H-bonding

Intramolecular H-bonding

Van der Waals radius (non-bonding distance)

Hydrogen bond strengths:

F-H····F (161.5 kJ/mol or 38.6 kcal/mol), illustrated uniquely by HF₂⁻, <u>bifluoride</u> O-H····N (29 kJ/mol or 6.9 kcal/mol), illustrated water-ammonia O-H····O (21 kJ/mol or 5.0 kcal/mol), illustrated water-water, alcohol-alcohol N-H····N (13 kJ/mol or 3.1 kcal/mol), illustrated by ammonia-ammonia N-H····O (8 kJ/mol or 1.9 kcal/mol), illustrated water-amide HO-H····OH⁺ ₃ (18 kJ/mol^[19] or 4.3 kcal/mol)

Is there a H-bond possible in CHCl₃?